Lesson No.23

BIOS and DOS Interrupts

In IBM PC there are certain interrupts designated for user programs to communicate with system software to access various standard services like access to the floppy drive, hard drive, vga, clock etc. If the programmer does not use these services he has to understand the hardware details like which particular controller is used and how it works. To avoid this and provide interoperability a software interface to basic hardware devices is provided except in very early computers. Since the manufacturer knows the hardware it burns the software to control its hardware in ROM. Such software is called firmware and access to this firmware is provided through specified interrupts.

This basic interface to the hardware is called BIOS (basic input output services). When the computer is switched on, BIOS gets the control at a specified address. The messages at boot time on the screen giving BIOS version, detecting different hardware are from this code. BIOS has the responsibility of testing the basic hardware including video, keyboard, floppy drive, hard drive etc and a special program to bootstrap. Bootstrap means to load OS from hard disk and from there OS takes control and proceeds to load its components and display a command prompt in the end. There are two important programs; BIOS and OS. OS services are high level and build upon the BIOS services. BIOS services are very low level. A level further lower is only directly controlling the hardware. BIOS services provide a hardware independent layer above the hardware and OS services provide another higher level layer over the BIOS services. We have practiced direct hardware access with the video device directly without using BIOS or DOS. The layer of BIOS provides services like display a character, clear the screen, etc. All these layers are optional in that we can skip to whatever lower layer we want.

The most logical way to provide access to firmware is to use the interrupt mechanism. Specific services are provided at specific interrupts. CALL could also have been used but in that case every manufacturer would be required to place specific routines at specific addresses, which is not a flexible mechanism. Interrupts provide standard interrupt number for the caller and flexibility to place the interrupt routine anywhere in the memory for the manufacturer. Now for the programmer it is decided that video services will be provided at INT 10 but the actual address of the video services can and do vary on computers from different manufacturers. Any computer that is IBM compatible must make the video services accessible through INT 10. Similarly keyboard services are available at INT 16 and this is standard in every IBM compatible. Manufacturers place the code wherever they want and the services are exported through this interrupt.

BIOS exports its various services through different interrupts. Keyboard services are exported through INT 16, parallel port services through INT 17 and similarly others through different interrupts. DOS has a single entry point through INT 21 just like a pin hole camer, this single entry points leads to a number of DOS services. So how one interrupt provides a number of different services. A concept of service number is used here which is a defecto standard in providing multiple services through an interrupt. INT 10 is for video services and each of character printing service, screen clearing service, cursor movement service etc. has a service number associated to it. So we say INT 10 service 0 is used for this purpose and INT 10 service 1 is used for that purpose etc. Service numbers for different standard services are also fixed for every IBM compatible. The concept of exported services through interrupts is expanded with the service numbering scheme.

The service number is usually given in the AH register. Sometimes these 256 services seem less. For example DOS exports thousands of services. So will be often see an extension to a level further with subservices. For examples INT 10 character generator services are all provided through a single service number and the services are distinguished with a subservice number.

The finally selected service would need some arguments for it to work. In interrupts arguments are usually not given through stack, rather registers are used. The BIOS and DOS specifications list which register contains which argument for a particular service of a particular interrupt.

We will touch some important BIOS and DOS services and not cover it completely neither is it possible to cover it in this space. A very comprehensive reference of interrupts is the Ralph Brown List. It is just a reference and not to be studied from end to end. All interrupts cannot be rememberd and there is no need to remember them.

The service number is almost always in AH while the subservice number is in AL or BL and sometimes in other registers. The documentation of the service we are using will list which register should hold what when the interrupt is invoked for that particular service.

Our first target using BIOS is video so let us proceed to our first program that uses INT 10 service 13 to print a string on the screen. BIOS will work even if the video memory is not at B8000 (a very old video card) since BIOS knows everything about the hardware and is hardware specific.

	
	Example 8.2

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018
	; print string using bios service

[org 0x0100]

 jmp start

message: db 'Hello World'

start: mov ah, 0x13 ; service 13 - print string

 mov al, 1 ; subservice 01 – update cursor
 mov bh, 0 ; output on page 0

 mov bl, 7 ; normal attrib

 mov dx, 0x0A03 ; row 10 column 3
 mov cx, 11 ; length of string

 push cs

 pop es ; segment of string
 mov bp, message ; offset of string
 int 0x10 ; call BIOS video service

 mov ax, 0x4c00 ; terminate program

 int 0x21

	007
	The subservice are versions of printstring that update and do not update the cursor after printing the string etc.

	008
	Text video screen is in the form of pages which can be upto 32. At one time one page is visible which is by default the zeroth page unless we change it.

When we execute it the string is printed and the cursor is updated as well. With direct access to video memory we had no control over the cursor. To control cursor a different mechanism to access the hardware was needed.

Our next example uses the keyboard service to read a key. The combination of keyboard and video services is used in almost every program that we see and use. We will wait for four key presses; clear the screen after the first, and draw different strings after the next key presses and exiting after the last. We will use INT 16 service 1 for this purpose. This is a blocking service so it does not return until a key has been pressed. We also used the blinking attribute in this example.

	
	Example 8.3

	001

002

003

004

005

006

007

008
009-028
029-069
070-092
093

094

095

096

097

098

099

100

101

102

103

104

105

106
107

108

109

110

111

112

113

114

115

116

117

118

119
120

121

123

124
125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148
	; print string and keyboard wait using BIOS services

[org 0x100]

 jmp start

msg1: db 'hello world', 0

msg2: db 'hello world again', 0
msg3: db 'hello world again and again', 0
;;;;; COPY LINES 005-024 FROM EXAMPLE 7.1 (clrscr) ;;;;;

;;;;; COPY LINES 050-090 FROM EXAMPLE 7.4 (printstr) ;;;;;

;;;;; COPY LINES 028-050 FROM EXAMPLE 7.4 (strlen) ;;;;;

start: mov ah, 0x10 ; service 10 – vga attributes
 mov al, 03 ; subservice 3 – toggle blinking
 mov bl, 01 ; enable blinking bit
 int 0x10 ; call BIOS video service
 mov ah, 0 ; service 0 – get keystroke
 int 0x16 ; call BIOS keyboard service

 call clrscr ; clear the screen

 mov ah, 0 ; service 0 – get keystroke
 int 0x16 ; call BIOS keyboard service

 mov ax, 0
 push ax ; push x position
 mov ax, 0
 push ax ; push y position
 mov ax, 1 ; blue on black

 push ax ; push attribute
 mov ax, msg1

 push ax ; push offset of string
 call printstr ; print the string
 mov ah, 0 ; service 0 – get keystroke
 int 0x16 ; call BIOS keyboard service

 mov ax, 0
 push ax ; push x position
 mov ax, 0
 push ax ; push y position
 mov ax, 0x71 ; blue on white
 push ax ; push attribute
 mov ax, msg1

 push ax ; push offset of string
 call printstr ; print the string
 mov ah, 0 ; service 0 – get keystroke
 int 0x16 ; call BIOS keyboard service

 mov ax, 0
 push ax ; push x position
 mov ax, 0
 push ax ; push y position
 mov ax, 0xF4 ; red on white blinking
 push ax ; push attribute
 mov ax, msg1

 push ax ; push offset of string
 call printstr ; print the string
 mov ah, 0 ; service 0 – get keystroke
 int 0x16 ; call BIOS keyboard service

 mov ax, 0x4c00 ; terminate program

 int 0x21

	099-100
	This service has no parameters so only the service number is initialized in AH. This is the only service so there is no subservice number as well. The ASCII code of the char pressed is returned in AL after this service.

Exercises

1. Write a TSR that forces a program to exit when it tries to become a TSR using INT 21h/Service 31h by converting its call into INT 21h/Service 4Ch.

2. Write a function to clear the screen whose only parameter is always zero. The function is hooked at interrupt 80h and may also be called directly both as a near call and as a far call. The function should detect how it is called and return appropriately. It is provided that the direction flag will be set before the function is called.
3. Write a function that takes three parameters, the interrupt number (N) and the segment and offset of an interrupt handler XISR. The arguments are pushed in the order N, XISR’s offset and XISR’s segment. It is known that the first two instructions of XISR are PUSHF and CALL 0:0 followed by the rest of the interrupt handler. PUSHF instruction is of one byte and far call is of 5 bytes with the first byte being the op-code, the next two containing the target offset and the last two containing the target segment. The function should hook XISR at interrupt N and chain it to the interrupt handler previously hooked at N by manipulating the call 0:0 instruction placed near the start of XISR.

4. Write a TSR that provide the circular queue services via interrupt 0x80 using the code written in Exercise 5.XX. The interrupt procedure should call one of qcreate, qdestroy, qempty, qadd, qremove, and uninstall based on the value in AH. The uninstall function should restore the old interrupt 0x80 handler and remove the TSR from memory.
